Size-Compatible, Polymer-Based Air-Gap Formation Processes, and Polymer Residue Analysis for Wafer-Level MEMS Packaging Applications
نویسندگان
چکیده
This study aims at investigating a polymer-based air-gap creation method for the packaging of microelectromechanical systems (MEMS), and exploring the chemical composition of the polymer residue on the final package. Polymer-based air-gap formation utilizes thermal decomposition of a sacrificial polymer, poly(propylene carbonate) (PPC), encapsulated within an overcoat polymer. BCB (Cyclotene 4026-46) was used as the overcoat material because decomposition products of sacrificial polymer are able to permeate through it, leaving an embedded air-gap structure around the MEMS device. Sizecompatibility and cleanliness of MEMS devices are important attributes of the polymerbased air-gap MEMS packaging approach. This study provides a framework for size-compatible and clean air-gap formation by selecting the type of PPC, optimizing thermal treatment steps, identifying air-gap formation options, assessing air-gap formation performance, and analyzing the chemical composition of the residue. The air-gap formation processes using photosensitive PPC films had at least twice the residue compared to processes using nonphotosensitive PPC films. The major contribution to the residue in photosensitive PPC films was from the photoacid generator (PAG), which was used to catalyze the thermal decomposition of the PPC. BCB is compatible with PPC, and provides mechanical stability during creation of the air-gaps. The polymer-based air-gaps provide a monolithic, low-cost, integrated circuit compatible MEMS packaging option. [DOI: 10.1115/1.4030952]
منابع مشابه
Packaging-compatible wafer level capping of MEMS devices
0167-9317/$ see front matter 2012 Elsevier B.V. A http://dx.doi.org/10.1016/j.mee.2012.11.010 ⇑ Corresponding author. E-mail address: [email protected] (P.A. Kohl). A cost-effective, wafer-level package process for microelectromechanical devices (MEMS) is presented. The movable part of MEMS device is encapsulated and protected while in wafer form so that commodity, lead-frame packaging can be use...
متن کاملA Modular, Chip Scale, Direct Chip Attach MEMS Package: Architecture and Processing
This paper describes the development of a chip scale microelectromechanical system (MEMS) carrier compatible with modern surface mount assembly. Such a package could facilitate the commercial implementation of many MEMS devices currently feasible only as prototypes. In order to achieve the project goals, work focused on the reduction of MEMS package volume and on the incorporation of solder int...
متن کاملLow temperature zero-level packaging of MEMS
Zero-level packaging technology ensures dicing and handling compatibility of the MEMS device along with low cost by encapsulating the MEMS components using wafer level processing. It is also essential for providing the MEMS with a controlled ambient in a cost-effective way. In order to be compatible with a broad range of MEMS processes, IMEC developed sealing methods with a low temperature budg...
متن کاملCost-Efficient Wafer-Level Capping for MEMS and Imaging Sensors by Adhesive Wafer Bonding
Device encapsulation and packaging often constitutes a substantial part of the fabrication cost of micro electro-mechanical systems (MEMS) transducers and imaging sensor devices. In this paper, we propose a simple and cost-effective wafer-level capping method that utilizes a limited number of highly standardized process steps as well as low-cost materials. The proposed capping process is based ...
متن کاملSUEX Dry Film Resist – A new Material for High Aspect Ratio Lithography
SUEX epoxy Thick Dry Film Sheets (TDFS) are a promising material for a wide range of MEMS applications. They contain a cationically cured modified epoxy formulation utilizing an antimony-free photo acid generator (PAG). A highly controlled solvent-less process provides uniform resist coatings between two throw-away layers of protective polyester (PET) film in varying thicknesses ranging from 10...
متن کامل